

ZOO4 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	75+	23.1%
В	60+	23.3%
С	45+	26.3%
D	37+	11.3%
No award	<37	16.1%

2004 Higher Chemistry Marking Scheme							
MC Qu	Answer	% Pupils Correct	Reasoning				
1	В	54	☑A Iodine does not conduct as it is a non-metallic covalent substance ☑B Potassium melts at 64°C and is a metal so has a high electrical conductivity ☑C silicon oxide is a covalent network compound with high mpt. and low conductivity ☑D Potassium fluoride has a high mpt (i.e. ionic) but will conduct when molten				
2	С	59	Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions. Experiment 1: Fe ²⁺ ions produced as nail P corrodes to protect the copper metal Experiment 2: No Fe ²⁺ ions produced as zinc corrodes to prevent nail Q from corroding				
3	A	73	Argon has electron arrangement of 2,8,8 Sulphur atoms (2,8,6) gains 2 electrons to become S ²⁻ sulphide ions (2,8,8) Calcium atoms (2,8,8,2) lose 2 electrons to become Ca ²⁺ calcium ions (2,8,8)				
4	A	64	no. of mol = volume x concentration = 0.05litres x 0.1mol l ⁻¹ = 0.005mol $H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$ $1mol \qquad 2mol$ $0.005mol \qquad 0.01mol$ $volume = \frac{no. of mol}{concentration} = \frac{0.01mol}{0.4mol l^{-1}} = 0.025litres = 25cm^3$				
5	D	77	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
6	С	50	■A Rate decreases (reaction slows down) as reaction proceeds ■B Rate at end should be horizontal if reaction is approaching zero ■C Rate falls sharply at start and gradually comes to horizontal where rate = zero ■D Rate decreases (reaction slows down) as reaction proceeds				
7	В	44	0.8 mol of H₂ remaining ∴ 0.2 mol H₂ reacted H₂ + I₂ → 2HI 1mol 2mol 0.2mol 0.4mol				
8	D	72	Enthalpy change is endothermic type (uphill overall) Activation energy is measured from reactants to top of hill (120-40=80)				
9	С	94	 In the sector of the sector of				
10	A	79	 ☑A Boiling point increases as atoms get bigger → more Van der Waals (p6 data book) ☑B density increases down group 7 (p5 data book) ☑C 1st ionisation energy decreases down group 7 (p11 data book) ☑D atomic size increases down group 7 (p7 data book) 				
11	D	76	Add 1 st + 2 nd Ionisation energies together from p10 of data booklet to remove 2 electrons per atom $\blacksquare A$ Sc $\triangle H$ = 633 + 1235 = 1868kJ mol ⁻¹ $\blacksquare B$ Ti $\triangle H$ = 659 +1310 = 1969kJ mol ⁻¹ $\blacksquare C$ V $\triangle H$ = 651 + 1410 = 2061kJ mol ⁻¹ $\square D$ Cr $\triangle H$ = 653 + 1591 = 2244kJ mol ⁻¹				
12	С	63	 A CH4: non-polar molecule as electronegativity difference is cery low B CO2:C-O bond has a large enough electroneg. difference but linear shape makes it non-polar C NH3: N-H bond is polar as electronegativity difference is large enough D CCl4:C-Cl bond is large enough Eneg. difference but tetrahedral shape makes it non-polar 				

13	A	58	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
14	В	63	$\begin{array}{l} \text{gfm of } SO_2=64.1g \therefore \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{128.2}{64.1} = 2\text{mol of } SO_2 \\ \hline \blacksquare A \text{ gfm } H_2=2g \therefore \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{2.0}{2} = 1\text{mol of } H_2 \\ \hline \blacksquare B \text{ gfm } He=4g \therefore \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{8.0}{4} = 2\text{mol of } He \\ \hline \blacksquare C \text{ gfm } O_2=32g \therefore \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{32.0}{32} = 1\text{mol of } O_2 \\ \hline \blacksquare D \text{ gfm } \text{Ne}=20.2g \therefore \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{80.8}{20.2} = 4\text{mol of } \text{Ne} \end{array}$		
15	D	25	$gfm Cu = 63.5g \qquad no. of mol = \frac{mass}{gfm} = \frac{5}{63.5} = 0.0787mol$ $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ $1mol \qquad 2mol \qquad 0.157mol \qquad 0.157mol \qquad 0.157mol \qquad 0.157 \times 107.9 = 17.0g$ $gfm Cu = 107.9g \qquad mass = no. of mol \times gfm = 0.157 \times 107.9 = 17.0g$		
16	A	42	 A Reforming: converting straight chains into branched and ring structures B Hydrogenation/addition: H₂ added across the C=C double bond C Dehydration: Water eliminated from molecule leaving a C=C double bond D Cracking: Larger molecules made smaller producing a molecule with a C=C bond 		
17	В	72	⊠A aldehyde ⊠B ketone ⊠C carboxylic acid ⊠D ester		
18	В	71	2,2-dimethylpentan-1-ol is $CH_3CH_2CH_2C(CH_3)_2CH_2OH \rightarrow C_7H_{16}O$ $\blacksquare A$ 2-methylpentan-1-ol is $C_6H_{14}O$ $\blacksquare B$ 2,3,3-trimethylbutan-1-ol is $C_7H_{16}O$ $\blacksquare C$ octan-1-ol is $C_8H_{18}O$ $\blacksquare D$ 3,3,4-trimethylpentan-1-ol is $C_8H_{18}O$		
19	В	49	Cracking is when larger less useful molecules are turned into smaller more useful molecules: $C_2H_6 \rightarrow C_2H_4 + H_2$. C_2H_4 is smaller than C_2H_6 and can more usefully be used in making plastics.		
20	A	74	$CH_3CH_2COO^-Na^+$ is the salt sodium propanoate. It is made from reacting an acid and an alkali together (i.e. propanoic acid + sodium hydroxide)		
21	D	66	 A Methanol is a primary alcohol which oxidises into methanal & methanoic acid B Methanol is a primary alcohol which oxidises into methanal C Synthesis gas (CO + H₂) can be turned into methanol (to make methanal for plastics) A Ikenes need at least 2 carbons to have a C=C bond 		
22	A	51	$\begin{array}{cccc} gfm \ H_2 = 2g & gfm \ NH_3 = 17g \\ \hline N_2 + 3H_2 &\rightleftharpoons 2NH_3 \\ 1mol & 3mol & 2mol \\ & 6g & 34g \\ & 60g & 340g \\ & 60kg & 340kg \end{array} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$		
23	D	71	Synthesis gas is a mixture of carbon monoxide and hydrogen		
24	D	79	 ☑A contains 2 function groups (-COOH) ☑B contains 2 function groups (-OH) ☑C contains 2 functional groups (-COOH and -OH) ☑D methanol only has 1 functional group ∴ polymer cannot continue to polymerise 		
25	A	96	 ☑A Kevlar is extremely strong and is used in bullet-proof vests ☑B Biopol is a biodegradable plastic ☑C Poly(ethenol) is a soluble plastic ☑D Poly(ethyne) is a plastic which is an electrical conductor 		

26	A	84	Glycerol (prop	ane-1,2,3-1	triol) has	s 3 ca	rbons,	each	contair	ning an -OH group
27	В	74	 ☑ A Fats & Oils have the same structure to produce the same no. of hydrogen bonds ☑ B Fat molecules are have less C=C bonds which allows them to pack more closely ☑ C Fat molecules are more closely packed ☑ D Fats & Oils have no cross links between the molecules 							
28	С	91	Enzymes are Proteins are	globular polymer	r prote s made	ins. from	n amino	acid	monom	er units
29	D	38	Raw materials are chemicals which are taken from the Earth and used as chemical reactants in the chemical industry. Raw materials include: sodium chloride (salt), water, methane and air							
			0 C	+	0 ₂	→	CO ₂			∆H=-393.5 kJ
20	D	10		• +	<u></u> ² 0₂	→	CO2			∆H=-283.0 KJ
30	В	00	0 C 0x-1	+	02 CO2	\rightarrow	CO₂ CO	+	<u></u> ¹ 20₂	∆H=-393.5 kJ ∆H=+283.0 kJ
			0 + 0 ' C	+	$\frac{1}{2}O_{2}$	\rightarrow	СО		2	∆H=-110.5 kJ
21	Ν	70	Catalysts do no	t alter th	e positio	n of e	quilibriu	n (sam	e % of r	eactants & products)
51	D	10	Catalysts do no	t change t	the value	e of th	e enthal	py cha	nge (∆H))
			$NH_3 + H_2O \Rightarrow N$	H4⁺ + OH' JH4⁺CI⁻_ [N	equilibr ⁻ equilibr	rium es Lincre	tablishe	S.		
32	C	29	B By adding N	NH4⁺CI⁻, [ŀ NH4⁺CI⁻, [ŀ	√14 jwn 1⁺]unaff	ected	in this e	quilibr	ium	
	•		⊡C By adding N	NH4 ⁺ Cl ⁻ , eq	uilibrium	shifts	to left	to rem	ove NH4	$_{+}^{+}$ ions and [OH ⁻] also \downarrow
			区 By adding N 区 A pH must less	NH4"CI", [(than pH=1	_1*] will ii L	icreas	e			
33	C	71	B pH must be b	etween pl	l=1 and pl	1=2				
		/ 1	SD pH must be g	reater the	1=2 and p 2n 3	7-3				
34	A	83	Sulphuric acid i	s a strong	g acid (fu	Illy dis	sociates	;)		
	/ \	00	0.1mol l ⁻¹ is clas	sified as a	a dilute : ve longer	solutio	n. .t.as.etha	noic ac	id has low	uer [H+]
35	C	70	B Ethanoic acid	l would tak	ke longer Ke longer	to prod	uce the f	irst 10	cm ³ of ga	S
55	C	10	☑C Same total no ☑D The average	o. of moles rate of re	of H⁺ pro action wa	esent a s slowe	s volume r for eth	& conc anoic a	of each a cid	icid is same
26	D	54	NaOH(aq) has a	higher pl	1 than N	H3(aq)	as NaOł	l is ful	ly dissoc	ciated
30	В	00	NaOH(aq) has a	higher co	nductivi	ty tha	n NH3(aq) as No	OH is fu	ully dissociated
~ -	•		1. Balance atoms	(other the adding H2C	an H and () to other	D) side		2I 2T	O₃ ⁻ O₂ ⁻	\rightarrow I ₂ \rightarrow I ₂ + 6H ₂ O
37	D	46	3. Balance H by a	udding H⁺ t	o other s	ide		21	0₃ ⁻ + 12H	$\downarrow^{+} \rightarrow I_2 + 6H_2O$
			4. Balance charge	e by adding	g e ⁻ to mo	st posi	tive side	21	O₃ ⁻ + <u>12</u> H	* + 10e ⁻ → I ₂ + <u>6</u> H ₂ O
20	C	51	B No neutrali	sation of	acid so i	not act	ring as a	base		
30	C	10	$\square C Mg \to Mg^{2+}$	+ 2e⁻: Mg	is oxidis	sed so	NH ₃ is c	icting o	as an oxi	dising agent
			区D It NH3 was	a reducion α and lose	ng agent es p → ma	<u>, Mg w</u> iss no. +	ould be •3 & atom	reduce nic no. +	d and ga 1 → corre	un electrons. ect answer
39	R	60	⊠B nucleus gains	p and lose	$s \alpha \rightarrow ma$	ss no	3 & atom	ic no1	1	
	D		EC nucleus gains 区D nucleus gains	α and lose n and lose	es n → ma es α → ma	ss no. + ss no	う & atom ・3 & atom	ic no. +: ic no:	2 → corre 2 → corre	ect answer ect answer
			A This is elec	tron capt	ure					
40	C	69	B Nuclear fus	sion: small	l atoms j	oin to	gether t	op bec	ome a bi	gger atom
			Neutron co	oture foll	e aroms lowed hv	proto	n emissi	er atol on.	115	

2004 Higher Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1a	Any answer from:	Bonding (Metallic solid) Monatomic gas Covalent network Discrete covalent molecular gas Discrete covalent molecular solid	Element (sodium) helium, neon, argon boron, carbon (graphite), carbon (diamond), silicon hydrogen, nitrogen, oxygen, fluorine, chlorine sulphur, phosphorus, carbon (fullerene)				
1b	Delocalised outer electrons jump from outer shell to neighbouring atom	Metallic bonding has inner positive cores (nucleus + inner electron shells) and delocalised electrons which can move from atom to atom conducting electricity					
2a	${}^{32}_{15}P \rightarrow {}^{32}_{16}S + {}^{0}_{-1}e$	etaeta emission involves the splitproton (stays in the nucleus) and	ting of a neutron in the nucleus into a d an electron (emitted as a eta eta particle)				
2b(i)	1.505 ×10 ²³	1mol ³² P = 32g = 6.02 ×10 ²³ atoms 8g = 6.02 ×10 ²³ atoms × ⁸ / ₃₂ = 1.505 × 10 ²³ atoms					
2b(ii)	42.9days	Time (days) 0 14.3 28.6 42.9	Mass of ³² P remaining 8g 4g 2g 1g				
3а	Sulphur dioxide	sphalerite is impure zinc sulphide. Under high temperature, sulphur in zinc sulphide reacts with oxygen from air to form SO_2 . This SO_2 is further reacted to form sulphuric acid (H_2SO_4)					
3b	displacement	Higher up metal (zinc) displaces lower down metals from their ions (lead, silver, gold and copper ion impurities in ore)					
3c	Arrow from sulphuric acid into the neutraliser	The zinc oxide in the neutraliser requires an acid to neutralise. As zinc sulphate is produced in the neutraliser, the acid must be sulphuric acid					
3d	58.555kg	Q=It = 2000A × (24×60×60)seconds = 172800000C Zn + 2e ⁻ \rightarrow Zn 1mol 2mol 1mol 2×96500C 65.4g 193000C 65.4g 172800000C 65.4g × $\frac{17280000}{193000} = 58555g = 58.555kg$					
4a	Starch	Starch ($C_6H_{10}O_5$) _n is a long chain polymer made of glucose $C_6H_{12}O_6$ monomer units joined together by condensation polymerisation					
4 b(i)	Silver mirror produced	Tollen's reagent produces a silver mirror in the presence of aldehyde groups					
4b(ii)	-с<он	Aldehydes oxidise into carboxylic acid groups					
4c	Renewable resource	Glucose, from sugar cane, is a renewable resource and can be replaced every year by growing more sugar cane. Methane in natural gas takes millions of years to form and is a non-renewable resource.					
5α	Rate of forward & reverse reactionsSameConcentration of reactants compared to productsUsually different	At equilibrium: the rate of forward The concentrations of reactants ar depend on conditions like temperat	l reaction = rate of reverse reaction ad products at equilibrium are rarely equal and ure and pressure.				
5b(i)	forward reaction is exothermic	Increase in temperature favours the endothermic reaction Equilibrium shifts to left so reverse reaction must be endothermic ∴Forward reaction must be exothermic					

5b(ii)	No change	Both reactant and product sides of reaction contain 4 moles of gaseous chemicals. Tyhere is no pressure change for forward and reverse reactions so changing pressure does not affect the equilibrium.			
6a	purple \rightarrow colourless	Permanganate is purple and loses its colour when it reacts with oxalic acid			
6b(i)	83.3seconds	Rate at $40^{\circ}C = 0.012s^{-1}$ time = $\frac{1}{rate} = \frac{1}{0.012s^{-1}} = 83.3s$			
6b(ii)	Colour change is slow and hard to time exactly	Colour changes which indicate the end of a reaction must be relatively fast. Slow colour changes lead to error if the colour transition is over a number of seconds.			
6c	Curve moves to right	Increases in temperature increase the average kinetic energy of the molecules in the reaction. This moves the peak of the curve to the right. (NB the no. of molecules has not changed total area under the curve should be equal)			
7α	H O N-C	Peptide links are formed when the acid group (-COOH) of an amino acid joins with the amine group (-NH ₂) of another amino acid by condensation polymerisation and a water molecule is removed at the join.			
7b	Peak at 37°C	At temperatures above 37°C, the enzyme activity reduces as the enzyme changes shape and denatures.			
7c	Changes shape	pH changes can change the shape of an enzyme as H ⁺ and OH ⁻ can react with the structure of the globular protein and change its shape.			
8a	-54.34	Average temperature at start= 19°C c=4.18 kJ kg ⁻¹ °C ⁻¹ Final temperature = 25.5°C volume of water 40cm ³ \therefore Temperature change Δ T=6.5°C \therefore mass of water = 0.04kg E _h = cm Δ T = 4.18 × 0.04 × 6.5 = 1.0868 kJ NaOH + HCl \rightarrow NaCl + H ₂ O 1mol 1mol no. of mol H ⁺ = volume × concentration = 0.02litres × 1mol l ⁻¹ = 0.02mol 0.02mol \Leftrightarrow 1.0868kJ 1mol \Leftrightarrow 1.0868kJ × ¹ / _{0.02} = 54.34kJ mol ⁻¹ Exothermic reaction =-54.34kJ mol ⁻¹			
8b	10 ⁻¹⁴ mol I ⁻¹	$[OH^{-}] = \frac{10^{-14}}{[H^{+}]} = \frac{10^{-14}}{1} = 10^{-14} \text{ mol } I^{-1}$			
9a	P ³⁻ ion has one more complete electron shell than Al ³⁺	P ³⁻ ion has an electron arrangement of 2,8,8 and has three complete electron shells. Al ³⁺ ion has an electron arrangement of 2,8 and has only two complete electron shells			
9b	More protons in Ca ²⁺ nucleus to draw in outer electron shell	Ca ²⁺ and P ³⁻ have the same electron arrangement (2,8,8) and both have three complete electron shells. Ca ²⁺ ions have 20 protons in the nucleus but P ³⁻ ions only have 15 protons in the nucleus. Greater positive charge in Ca ²⁺ nucleus draws in outer electron shell closer and makes Ca ²⁺ ion smaller than P ³⁻ ion.			
10a (i)	6 delocalised electrons	The 6 delocalised electrons (3 above and 3 below the carbon ring) flatten			
10a(ii)	of the benzene ring C6H2OHCl3	and add stability to the structure of benzene Each corner of the hexagon structure of benzene has a hydrogen attached			
10a(iii)	HO-CI CH3 Making petrol	NB Phenol -OH group is carbon number 1 Reforming is changing straight chain hydrocarbons into branched and ring			
TOD	Making perror	hydrocarbons necessary for use as petrol (to stop auto-ignition before the spark)			

11a	Diagram showing:	graduated tube beaker water filter funnel magnesium ribbon				
11b	<u>Measurements</u> Mass of Mg at start Mass of Mg at end Volume of H2 produced	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
12a	Brown colour decolourises (Vitamin C in excess)	no. of mol $C_6H_8O_6$ = volume x concentration = 0.05litres x 0.1mol l ⁻¹ = 0.005mol no. of mol $I_2 = \frac{mass}{gfm} = \frac{0.54}{253.8} = 0.00213mol$ $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$ 1mol 0.00213mol More $C_6H_8O_6$ available (0.005mol) than is needed to react with I_2 (0.00213mol) All I_2 reacts with excess $C_6H_8O_6$ so brown colour of iodine disappears Excess $C_6H_8O_6$ present \rightarrow all iodine reacted \rightarrow brown colour decolourises				
12b	C ₆ H ₈ O ₆ ↓ C ₆ H ₆ O ₆ + 2H ⁺ + 2e ⁻	$C_6H_8O_6 \rightarrow C_6H_6O_6 + 2H^+ + 2e^-$				
13a	butan-2-ol	4 carbons in longest chain functional group on functional group containing functional group carbon number 2 is -OH group				
13b	Structure of 2-methylpropan-2-ol	Tertiary alcohols have 3 carbons directly attached to the carbon with the -OH group.				
13c	But-2-ene	But-2-ene (Z) reacts with HBr to produce only 2-bromobutane But-1-ene (Y) reacts with HBr to produce 1-bromobutane and 2-bromobutane				
14a(i)	Diagram showing:	Н Н О Н - C - C - C - H Н - C - C - C - H Н Н - C - C - H Н Н - C - C - H Н Н - C - C - H				
14a(ii)	Diagram showing:	test tube test test tube test tube test test test test test test test test				
14a(iii)	Diagrams showing:	СH ₃ -CH ₂ -O-H • • О-H H CH ₃ -CH ₂ -C-O-H • • О-H H				

14b	Diagram showing:	a) ethanoic acid in example but methanoic acid in question - replace CH_3 in acid with $H \therefore$ carboxylic acid in ester is methanoic acid $H-C \bigcirc H & CH_3 H & H \\ H & H & H & H \\ O-C - C - C - C - C - H \\ H & H & H & H \\ H & H & H & H \\ H & H &$
15a	-484	Equation $\bullet x$ -1: $2CO_2 + 2H_2O \rightarrow CH_3COOH + 2O_2$ ΔH =+876kJEquation $\bullet x$ 2: $2C + 2O_2 \rightarrow 2CO_2$ ΔH =-788kJEquation $\bullet x$ 2: $2H_2 + O_2 \rightarrow 2H_2O$ ΔH =-572kJAdd $\bullet' + \bullet' + \bullet'$ $2C + 2H_2 + O_2 \rightarrow CH_3COOH$ ΔH =-484kJ mol ⁻¹
15b	Answer to include:	Na ⁺ CH ₃ COO ⁻ fully ionises when dissolved in water to form Na ⁺ and CH ₃ COO ⁻ ions $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ CH_3COO^- ions join up with H ⁺ ions in water to form molecules of CH ₃ COOH as equilibrium lies well to left $H_2O \Rightarrow H^+ + OH^-$ As H ⁺ ions are removed as they join up with CH ₃ COO ⁻ H_2O dissociates into more H ⁺ ions and OH ⁻ ions. H ⁺ ions are removed but OH ⁻ remain $\therefore [OH^{-1} > [H^+] \therefore pH>7$
16a	$4KMnO_4$ \downarrow $2K_2O + 4MnO_2 + 3O_2$	$4KMnO_4 \rightarrow 2K_2O + 4MnO_2 + 3O_2$ (or 2KMnO_4 $\rightarrow K_2O + 2MnO_2 + 1\frac{1}{2}O_2$)
16b(i)	Any two from:	Remove funnel from top of burette before taking any readings Use a white tile under conical flask to aid visibility of colour change Repeat experiment and average results (ignoring rough titration)
16b(ii)	1.50	no of mol MnO ₄ ⁻ = volume × concentration = 0.025litres × 0.2mol l ⁻¹ = 0.005mol $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ 5mol 1 mol 0.025mol 0.005mol concentration = $\frac{no. of mol}{volume} = \frac{0.025_{mol}}{0.0167_{litres}} = 1.50mol l^{-1}$
17a	5.5 - 4.5	Page 16 of data booklet
17b	propyne	Peak at Chemical Shift =1 → -CH₃ Peak at Chemcial shift =2.7 "-C≡CH
17c	Two peaks drawn:	Peak at ChemShift=1 to relative Height 3 (-CH3 so ChemShift=1 and height 3 as 3H in group) Peak at ChemShift=3.7 to relative Height 2 (-CH2Cl so ChemShift=3.7 and height 2 as 2H in group)